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we obtain for the spectral density of fractional frequency fluctua-

tions, S,(f) = (f/~O)2LSpo(f):

Hfl
s,(f) =2xlo-10 —+—

V: 4Q’f
(2)

The Allan variance, u;, is given approximately by [9]

.,(T) =(:)2+ (83:’-’]2 (3,

for a measuring time ~, using aJJoscillator frequency of 8.5 GHz

and a bandwidth of 1 kl% We see from (3) that using a

resonator with a loaded Q of 109 (easily possible with present-day

superconducting technology), one would expect to obtain frac-

tional frequency fluctuations u,= A~/~ of - 8.3X 10-15 for times

longer than 0.5 s. For shorter times the first term on the right-hand

side of (3) becomes important. Since the oscillator would run at a

power level of -1 mW, thermaf noise would not make a signifi-

cant contribution to the AlIan variance for measuring times

longer than 0.5 s

In comparison with this prediction, the frequency sources with

the best short-term stability presently available commercially are

quartz crystal oscillators, and the best of these exhibit fractional

frequency fluctuations A f/f of -2 X10-13 forl s <7<100s.

We are presently building a cooled loop oscillator using the

8.5 GHz amplifier in order to test our prediction.

V. CONCLUSIONS

We have measured the phase noise of au 8.5 GHz GaAs

MESFET amplifier at temperatures from 1.7 K to 300 K. The

observed flicker phase noise was found to vary only weakly with

amplifier bias conditions and input power level, even when

operating well past the 1 dB gain compression point. A cryogenic

loop oscillator based on an amplifier with the level of intrinsic

phase noise we observed at 2 K should have exceptionally good

short-term frequency stability.
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Determination of the Scattering Matrix of Ring-Loaded

Corrugated Waveguide Mode Converters

LUIZ C. DA SILVA

Abstract —A previously developed method for the determination of the

scattering matrix of cylindrical waveguide mode converters, which is based

on the representation of the fields inside the corrugations by a small

number of radial modes, is extended to mode converters with ring-loaded

corrugations. The method, besides being accurate, reduces the computer

time necessary for the computations.

I. INTRODUCTION

Cylindrical waveguide mode converters, composed of a section

of nonuniform corrugated waveguide, are employed as a match-

ing device between smooth-walled input waveguides and corru-

gated horns, transforming the fundamental mode of the input

waveguide into the desired mode of the horn [1], [2].

In a previous work [3] a method was developed for the deter-

mination of the scattering matrix of such converters. The method

is based on the representation of the fields inside the corruga-

tions by a small number of radiaf modes. In the present paper,

this technique is extended to include converters with ring-loaded

corrugations.

The main benefit resulting from the use of ring-loaded corruga-

tions is an increase in the bandwidth of the converter.

A method of analysis for ring-loaded converters was previously

developed by James and Thomas [2] on the basis of mode-match-

ing techniques and the expansion of the fields inside the wave-

guide sections into modes propagating along the axis of the

converter. The advantage of the present formulation is the saving

of computer time it affords without loss of accuracy in the

results.

II. FORMULATION OF THE PROBLEM

The overall scattering matrix of the converter is obtained by

dividing the structure into elementag sections, as shown in Fig.

l(a), calculating the scattering matrix of each section, and pro-

gressively cascading them. The scattering matrix of an elementary

section is determined by following the8e steps:

(i) The elementary section is decomposed into three cascaded

subsections, as shown in Fig. l(b). Subsection I is the discontinu-

ity between two smooth-walled waveguides, and subsection III is

formed by a smooth-walled waveguide of length 1. The scattering

matrices of these subsections are calculated according to [1].

(ii) To obtain the scattering matrix of subsection H, it is

initially transformed into the equivalent structure shown in Fig.

l(c)L where metallic walls and magnetic surface current densities,

~ Ml and + fiz, were placed at p = b and p = c. In this way the
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Fig. 1. An elementary section of a mode converter.

subsection is divided into three regions: region 1 is a smooth-

walled waveguide of radius a and length d; regions 2 and 3 are

cavities limited by the surfaces p = a, p = b, z = O, z = d and

p = b, p = c, z = – dl, z = d + dz, respectively.

The subsection is excited by an incident wave composed of a

summation of modes (TEI,, and TMl~ ) of the smooth-walled

waveguide of radius a.

The magnetic surface current densities due to the nth mode of

the incident wave are given by

fizn=ii’’ xi,(b)... (lb)

where E’P is the unit vector in the p direction and @(x) is the

electric field ef~ectively existing in region 2, at p = x.

Expanding E2 into a summation over the radial modes, TE.I

and TM.I for the parallel-plate waveguide defined by the planes

z = O and z = d, ~TE(7’) and ~TM(7), respectively (given by

[4, eqs. (5.18), (5.19), (5.33) and (5.35)], results in

PE

PM

(

a2p

G2 = ~ m~n k~p sin+ cos a2Pzii4 + — cos @sin aZPZZ,
n b*=0 )

PE

+ ~ m~Pncos + sin a2pziiz (2b)
~=1

where a2P = pw/d, k; = k; – alp, kO is the free-space wavenum-

ber, d+ and d= are ‘unit vectors in the directions $ and z,

respectively, rnl~n, m: , m~n, and mfpn are unknown coeffi-

cients, and the summ’~tions were truncated into PE TE and

PM+ 1 TM modes.

(iii) The magnetic fields inside regions 1,2, and 3 as a function

of the unknown coefficients ml~n, m~r, m~n, and m; are

determined with the help of the magnetic dyadic Green’s’~unc-

10)

1.
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Fig. 2. Retunr loss, as a function of frequency, for the cylindrical waveguide

sections with three ring-loaded corrugations shown in [2, fig. 5(a) and (b)].

( —) Theoretical results applying the present method (using 12 modes

in region 1, four modes in region 2, ancl six modes in region 3); (– .– -)

theoretical results applying the method given in [2] (taking eight modes at

the input waveguide); (---) experimental results according to [2]. Curves

(u) correspond to the waveguide shown in [2, fig. 5(a)] and curves (b)

correspond to the waveguide shown in fig. 5(b) of the same reference.

tions of the corresponding regions:

~= j~( 7, F’) . IF( 7’) ds’ (3)
s

where ~(~’) means ~ln or fizn.
—

The expressions for G(7, F) and for ~ln, and fizn are given in

[3, eqs. (Al) and A(2)] and by (2), respectively.

(iv) The bounldary conditions for the magnetic fields at p = a

and p = b yield

~f(a)+ ii&(a) =fif(a) (4a)

fi:( b) = ii:( b) (4b)

Here, ~,~(x), j~~g (x), fi~( x), andl fi$(x) denote components

transverse to p at p =.x of the magnetic fields incident into the

subsection and in regions 1, 2, and 3, respectively.

Vector multiplying both members of (4a) and (4b), the first by

~TE(a), p=l,2,. . . . PE, and by ~TN[(a), p = 0,1,2,. ... PM, and

the second by ~TE(b), p =1,2,. . . . PE, and by ~TM(b), p =

0,1,2,. . . , PM, and integrating the resulting expressions over the

surfaces O < z <d, p = a and O < z < d, p = b, respectively, the

following system of linear equations is obtained:

[E]= [fi][z. ]. (5)
—

Here ~ is a 2(PE+ PM+1)x2(PE+ PM+l) matrix; M is a

2( PE + PM+ 1) X (NE + NM) matrix containing the coeffi-

cients m[ , ml~n, kf~n, and m(ti; NE(NM) is the number of ~E

(TM) mo~es considered as composing the incident wave; and ~,,,

is a 2( PE -i-_PM + 1) X (NE + NM) matrix. Expressions for the

elements of ~ and ~,n are given in the Appendix.

Inverting (5), the coefficients m~fl, ml~n, m~,m, and m& ~e

obtained.

(v) Once m~r, and mfln are known, the elements of the scatter-

ing matrix of the subsection under consideration are obtained

from [3, eqs. (12.a) to (12.d)], substituting into these equations

MC. and ml~~ for m~n and m~n, respectively.
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III. NUMERICAL RESULTS

As an example of an application, the method proposed here

was applied to the determination of the scattering matrices of the

cylindrical waveguides sections with the three ring-loaded corru-

gations shown in [2, figs. 5(a) and 5(b)]. Theoretical results for

the return loss are shown in Fig. 2. Also shown in the same figure

are the theoretical results obtained using the method given in [2],

together with the experimental results according to [2]. Discrep-

ancies between theoretical results are less than 1 dB. The present

method of calculation reduced computer time by a factor of 4.

IV. CONCLUSIONS

The utilization of radial modes in the characterization of the

fields inside the corrugations of ring-loaded cylindrical wave-

guide mode converters has permitted the development of a tech-

nique for determining the scattering matrix of these converters.

The main advantages of this technique are its accuracy and

computer time economy.

APPENDIX

EXPRESSIONS FOR ~m3 ELEMENTS OF ~ AND ~,”

The expressions for elements of the matrices ~ and fi,ti,

calculated according to the procedure given in Section II, are as

follows.

Elements of ~:

q,,, =givenby [3, eq. (A.1O) to(A.13)],

i=l, PT, j=l, P7’ (Al)

%,]+PT =2 C,~(a, a)8,,,

i=l, PE; j=l, PE (A2)

q,+P~+l,~+p~~ = 2C,~(a, a)fi~lj,

i = O, PM; j = O, PM (A3)

9i+PT, J = – r(~> ~)~,, >

i=l, PE; j=l, PE (A4)

%+ PT,, +PT =-<E(b, a)8,, - f fi(j,k)y,(i,k),

k-1

i=l, PE; j=l, PE (A5)

q,+ PT,, +PT+l = f~(j, k)y,(i, k),

k=l

i=l, PE; j= O,PM (A6)

%+ PTI,, +PE+l = –qqb,b)c,a,,,

i = O, PM; j = O, PM (A7)

i= O, PM; j=l, PE (A8)

q,+ PTl, j+PTl = –c,”(b, a)c,8,,+ Y Jt(j,k)
k=l

“[~yl(i,~)–~y2(i$~)
1

- f F,(j, k)yl(i, ~),
*=Q

i = O, PM; j= O, PM (A9)

q,, ~ = O if not defined above. (A1O)

Here

PT=PE+PM+l PT1=PT+PE+l

{
8,, = ;

ifi=j

ifi+j

<, =
{

2 ifi=O

1 ifi#O

% ~
CP’’f(x,y) = —Zz k2pd

o

.@2,X)~f2)(k2,~) – Jl(k,py) H~2)’(k2px)

‘ J,( k2Pb) H~2)( k2Pa) – .JI( k2Pa) H/2)( k2Pb) “

20 is the free-space impedance; Jl(.x) is the Bessel function of

the first kind of order 1; H(’)(x) is the Hankel function of the

second kind of order 1; and J{(kx) = d[Jl(kx)]/dx; H{z)’(kx)

= d[H~2)(kx)/dx]

C:(x, y) =
j

— k~pd
2kOZo

J,( k2px) H~2)’( k,py) – J~( k2py) H{2J( k2px)

J{(k2pb) H~2)’(k2Fa) – J{(k2pa)H~2)’(k2 b)
P

cqp = pn/d k;, = k: – a;
P

a3p=qm/(d+dl+d2) k:. = k: – a;
q

Yl( P) q) = k;p~dcos~z,-~g,(z+4) dZ

2jko
Fl(p, q) =

Zok;,d2c,

“Y1(P!9)

F2(P,9) = k z2:2k:
Ooq

J,( k,~b) H~2)’( k,,c) – J{ ( k,,c) Hf2)( kg,b)

“J{ ( kq,c) H/2)’ ( k3~b) – J( ( k~,b) H~2)’ ( k~~c)

“Y2(P!9)

2J

q(p, q) =
koZOd2 k: b

q

J1( k~,b) H{’)’ ( kq,c) – J(( k~~c) H~2)( kq~b)

“ J: ( k3Qc) H{2)’ ( kqgb) – J< ( kq,b) Hf2)’ ( ,k~qC)

“Y3(P+9).



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 37, NO. 3, MARCH 1989

Here

649

Y3(P>q) =~3@Yl(P,9) –~2pY2(P) i).
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